Fused Filament Fabrication (FFF) of 316L Green Parts for the MIM process

Carlo Burkhardt1, Peter Freigassner2, Oxana Weber1, Philipp Imgrund1, Stefan Hampel2
1 OBE Ohnmacht & Baumgärtner GmbH & Co KG, Turnstraße 22, 75228 Ispringen, Germany
2 HAGE Sondermaschinenbau GmbH & Co KG, Hauptstraße 52, 8742 Obdach, Austria

Correspondence to: Carlo Burkhardt (E-mail: cburkhardt@obe.de)

ABSTRACT
Fused Filament Fabrication (FFF), also known under Stratasys' trademark name Fused Deposition Modelling (FDM) is a polymer-based additive manufacturing method and in wide use for the 3D-printing of polymer parts. When using a specially developed, highly filled metal/polymer feedstock (55 vol.%), FFF can also be applied as a shaping method for metallic green parts as an alternative to injection moulding in the MIM process. In this paper, the specific properties of sintered 316L (1.4404) steel parts, printed on a tailored Fused Filament Fabrication machine, then debinded and sintered as in the conventional MIM process, are discussed. An overview of the state-of-the-art of the equipment, respective processing parameters, currently achieved sinter shrinkage, densities and achievable surface quality are given.